Measure Theory with Ergodic Horizons Lecture 25

Patterentiation et measures.

Examples.
(a) IF
$$\mu = J_{x_0}$$
 and ν is abomless (e.g. lebesyne measure on IR), then $\mu \perp \nu$.

lebessue decomposition theorem. It paul & be offinite measures on a measurable space (X, B). Then $\mu = \mu + \mu$ for some measures μ, μ on (X, B) such that $\mu \ll \nu$ and $\mu \perp \nu$.

Proof. It is enough to prove that X = Xo UX, with XieB, such that p|xo << 2|xo and v(X)= O. To show this, we may assume WLOG that p and v are finite, and brild X, by a 2-measure exhaustion argument las in the proof of Sierpinski's theocem), and we leave this as HW.

Def. Measure p and 2 on a neuronrable space (X, B) are said to be equivalent,

As a wrollary from Lebesger decomposition, we get.

Cocollary, let
$$\mu, \nu$$
 be ∇ -finite neasures on a reastrable space (X, B) . Then there
is a particle $X = X_0 \cup X_1$, $X_1 \in B_3$, such that $\mu|_{X_0} \sim \nu|_{X_0}$ and $\mu|_{X_1} \perp \nu|_{X_1}$.
Such a partition is unique up to sets that are μ and ν unly,
Proof. Applying labergue decomp. to μ, ν , we get $\mu = \mu_0 + \mu_1$ with $\mu \ll \nu$ and
 $\mu \perp \nu$. Applying labergue decomposition again to ν and μ_0 , we get $\nu = \nu_0 + \nu_1$ such
that $\nu_0 \ll \mu_0$ and $\nu_1 \perp \mu_0$, so $\mu_0 \sim \nu_0$. Now $\mu \perp \nu$ yields a partition $Y = Y_0 \sqcup Y_1$, with Y_2
in B_1 such that $\mu_1(Y_0) = 0 = \nu(Y_1)$ so $\mu_0(Y_1) = 0$. Similarly, $\nu_1 \perp \mu_0$ yields a partition $Y_0 = Z_0 \sqcup Z_1$
such that $\mu_0(Z_1) = 0 = \nu_1(Z_0)$, so $\nu_0(Z_1) = 0$. Thus, $X_0 := Z_0$ and $X_1 = Z_1 \sqcup Y_1$ is as desired.
The uniqueness is by checking that for any other such partition $X = X_0' \sqcup X_{1,1}'$

We would now like to understand the condition party better. Given a measure v, at example of such a pris given by py there fin a nonnegative measurable function: The following theorem says that this is (x, v) loc T-time measures. the only example

Radou-Nikodyn theorem. It
$$\mu, \nu$$
 be σ -finite neasures on a measure gree (X, B) . If $\mu \ll \nu$, then there is a B-measurable non-negative function
 $f: X \rightarrow [0, \infty)$ such that $\mu = \nu_F$, i.e. $\mu(B) = \int_B f \, d\nu$ for all $B \in \mathcal{B}$.

Signed measures.

Det. let (X, B) be a neuscrable space. A sighed measure on (X, B) is a function µ: B→ R:= f-00, 00] such that (i) $\mu(\varphi) = 0$. (ii) (tbl-addivity: $\mu(UB_n) = \sum_{n \in \mathbb{N}} \mu(B_n).$ (iii) p doesn't attain both values - a and ta. Remark. It belows from condition (iii) that in condition (ii), either the positive or The regative terms of the series run up to a finite number.

S.e.
$$\mu(X_{-}) = 0 = \sqrt{(X_{+})}$$
.
But For a signed centure 3 on (X, B) , call a set $B \in B$ purely positive
(rap. purely sugchive) if $V \subseteq B$, $C \in B$, $S \in C$, $S (C) \ge 0$ (rap. $S (C) \le 0$).
Cathou. A union of two positive sets A, B (i.e. $S(A), S(B) \ge 0$) may not
be positive:
 $B = S(A \cup B) = -1 + 1.1 - 1 = -0.9 \le 0$
Aile $S(A) = -1 + 1.1 - 1 = -0.9 \le 0$
Aile $S(A) = S(B) = 1.1 - 1 = 0.1 \ge 0.1 \le 0.$

so we repeat. Given No,..., Nr pairwise disjoint negative subsets of P, we take
as Nrt1 a
$$\frac{1}{2} - |argest ugative set in P | \bigcup Ni, i.e.
-3 (Nrt1) $\geq \frac{1}{2} \sup \{-3(N)\}$: N $\leq P | \bigcup Ni and N$ is negative β .
let N := $\bigsqcup N_R$, so N is negative and P_t := P N is pointive and $\frac{3}{2}(P_t) \geq \frac{3}{2}(P)$.
We show that P_t is purely positive. Indeed, becase $\frac{3}{2}(P) - \frac{3}{2}(N) = \frac{3}{2}(P_t) < G$,
it must be that $\frac{3(N)}{<} < \omega$, thus the sequence $(-\frac{3}{2}(N_R))_{R \in W}$ is summable, so
 $\frac{3}{(N_R)} \rightarrow D$. If there were a non-null injective of Nr.$$