
Measure Theory with Ergodic Horizons
Lecture 25

Differentiation of measures .

let m ando be two measures on the same measurable space (X
, B) .

We will try
to understand their relationship

.

Recall that we sayhatMe is absolutely continuous wit o
,
and write Mar ,

it v(B) = 0 => M(B) = 0 for each Bel
.

(Also recall that when
e is finite

, Mar is

equivalent to 2305530 sch Rat -(B) 1 / = M/B)2 for all BEB
, justic

fying the term "absolute continuity")
We now define the opposite notion te absolute continuity :

Lef. Measures h anda on a measurable seare (X
,
B) are said to be orthogo-

nat
, denoted 10 ,

if X= XLXo , Xa ,
Xo EB

,
such that u(Xu) = 0

and ~ (Xm) = 0
.

M ~ Such a partition is unique up
to sels that we

both m and wo wall

Examples.
(2) If M

= Exo and v is abouless leg . Lebesque measure or IR)
,

then & +0 ·



Indeed
, Xu := Exo3 and 10 : = X\(x

.
],

(8) Let up be the Bernoullip) measure on
2 Let 1 : 2

* >90
, 13 be the usual

enbedding (the isomorphism between 2 and the Canter af)
,

i

. e. 01001
...
It

0
. P2002

...,
where the latter is the termary representation . LMp leaves on the

standard Cantor set 2 = 20
,

13
,
while X(C) = 0

,
so <Mp

+ X.

(4 Let (X
, a) be a measure space. Recall bat for

any non-negative measurable
function :X-10

,
07

, M is the measure on X defined by MB) := Stop,
for all ermeas .

BEX ,
let X = XoLIX

,
with Xo

,
X

, -measurable,
and let forf ,

be nonnegative measurable functions such that fo : Axifi
for i : 0

.
1

.
Then MotMf, withened by the partition X= XoUX.

lebesue decomposition theorem .
It hand o be definite measures on a measurable space

IX
,
B)

.
Then M = M + M

for come measures Mo , M,

on (X
,

B) such thatMo0 and MLU .

Proof. It is enough to prove that X = XoLIX
1,

with X: CB
,

such that M/X00Ix and

/X ,) = 0
. To show this

,
we may assume WLOG that Mand 0 are finite

,

and build

X
, by a -measure exhaustion argumentlas in the proof of Sierpinski's too-

rem)
,

and we leave this as HW.

Def
. Measure & and 0 on a menuurable

space
IX

,
B) are said to be equivalent,



denoted More ,
if Ma and

<M ,
i

.
e . They have the same wall sets.

As a corollary from Labergue decomposition ,
we get

Corollary .
Let M ,

1 be Efinite measures on ameasurable space (X,
B)

.

Then there

is a partition X = XoUX
., XiEB ,

such that Mxo-Oxo and Mix
,

+vi
Such a partition is unique up to sels that are

m
and no wall,

Proof
. Applying Lebergue decomp .

to M ,
0

,
we get M = Mo + M with NO and

M I v . Applying Lebesque decomposition again to 0 and No ,
we get p = Po + &, such

that no Mo and Vitto
,

so Mo-Do .

Now MLV yields a partition -YoLYI, with Ye

in B
,

such that M14d = 0 = v(Yi) so NITil= 0. Similarly ,
V

, 11. yields a partition Yo:Zolz,

such that No (2) = 0 = v , (z0) ,
so Volzi) = 0

.
Thus

,
Xo : Zo and X

:
= z

, 214
, is as desired.

The uniqueness is by checking that for
any other such partition X = XoLXis

MXi X, ) = 0 = v/XiMXi) for : = 0
,

1.

We would now like to understand the conditionIn w better
.

Given a measure

0
,

an example of such a M is given by My where f is a nonnegative
measurable function : ~ The following theorem says that this is

the only example ↓
(

, r)
for -finite measures.



Radon-Nikodym theorem
.

Let a ,
0 be refinite measures on a measure space

#
,
B)

.

If M38 ,
then there is a B-measurable non-negative function

fix-(0
,
9) sch Rat M = Ur

,
i

.

e . M(B) = Slo for all BeL

to prove this theorem
,
it would be convenient te subtract one measure from another

,

which yields a so-called signed measure
.

We thus take a detour te define signed
measures and prove a useful decompositionMeorem for them

, postponing the

proof of the Radon-Nikadym theorem.

Signed measures.

Def
,

Let (X
,
2) be a measurable space .

A sighed measure on (X
,
1) is a function

M : B-R : = E&,&] such that

(i) M(Q = 0.

(ii) (tbl-addivity : M(Bu= M(Bu).

(iii) M doesn't attain both values - & and + &.

Remark
.
It follows from condition (iii) that in condition (ii)

,
either the positive or

the regative terms of the series sam up
to a finite number.



Examples .

(a) All measures are signed measures .

(6) If & and p are measures on
IX

, B) and at least one of them is finite
,

the

Mov is a signed measure.

() For any fel'(X,p) , M : = Fdr is a sighed measure
,

where

↑ (i) : = 1 pr
for all momeasurable BEX .

In fact
,
it is a finite signed measure.

We now show that all signed measures are given in example (6).

Jordar Decomposition Theorem
. Every signed measures on a measurable space (x

,
1)

is equal to M-0 where M ,
0 are measures on (X

,
B) (Hers at least one

ofMe and up is finite)

This theorem follows from another decomposition heorem :

Hahn DecompositionThoem. For any signed measure s on ameasurable space (X
,

1)

them is a partitiou X = X
+ UX -,

XIEB
,

such that 31x
,

and -3lx
:

are measures .

From this the Jordan decomposition follows by taking M:
= 31x

,

and 0 := -Six.



i
.
e. u(x_) = 0 = v(X +).

&ef
.

For a signed measure 3 On IX
,
B)

,
call a set BEB purely positive

Crop , purely negative) if VCIB ,
CEL

,
31C = 0 (op .

3(c) = 0).

Caution
.
A union of two positive sts A

,
B (i

.
e . 3(1)

,
31B) 20)

may
not

be positive : B S(AVB) =
- 1 + 1

. 1 - 1 = - 0
. 928

A

1 . /
- I While <(A) = > (b) = 1

. 1 = 1 = 0
. 130

.

-

However
,
positive sets las well as regative sets) are closed under disjoint unions.

Proof of Haha decomposition. We need to partition X into purely positive and punels
regative parts .

Assume WLOG that 320 .

Claim
. Every non-mull positive set PEX contains a non-null purely positive not REP

with 3(4+ = 3(P720.

Proof
·

We prove this by 5-measure exhaustion. It NoED be -largest negative
set

,
i

.
e.

- 3(No) <- Esip(-3(N) : NEP and N is negative)
,

where sup-win <sup , 13 .

Then PLNo is still positive (in fact
,
3(P1No) = 3(p)

,



so we repeat . Given No
, ...,

No pairwise disjoint negative subsets of P
,

we take
K

as Nexs a 5-largestuegative at in PlNi ,
:

.
e.

->(Na +l<2-3(N) : NE PIN and N is negativel.
let N :

=LNr ,
so N is negative and Pt := PIN is positive a 3=

We show thatPt is purels positive. Indeed, becase 3(p) - 13 (N)) = S(P+) < &,

it must be hut 13(N)/>&
,

Hous the sequence (3(Nr))re is summable
,

so

3 (Nm) -> 0
.
If there were a nournall negative not NEP

+,
then 76 for

which 13(Nm)/ < ES(N)
, contradicting the choice of Na.


